Part Number Hot Search : 
2N5486G SEC4401C 120N6 NTE6093 AD589KH LND150N3 TCYS6201 SM300
Product Description
Full Text Search
 

To Download Q67040-S4340 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SKP06N60,
SKB06N60 SKA06N60
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
* 75% lower Eoff compared to previous generation C combined with low conduction losses * Short circuit withstand time - 10 s * Designed for: - Motor controls G E - Inverter * NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour P-TO-220-3-1 P-TO-263-3-2 (D-PAK) - parallel switching capability (TO-220AB) (TO-263AB) * Very soft, fast recovery anti-parallel EmCon diode * Isolated TO-220, 2.5kV, 60s * Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKP06N60 SKB06N60 SKA06N60 Maximum Ratings Parameter Symbol Value
SKP06N60 SKB06N60 SKA06N60
P-TO-220-3-31 (FullPAK)
VCE 600V
IC 6A
VCE(sat) 2.3V
Tj 150C
Package TO-220AB TO-263AB
Ordering Code Q67040-S4230 Q67040-S4231 Q67040-S4340
5A
TO-220-3-31
Unit
Collector-emitter voltage DC collector current TC = 25C TC = 100C Pulsed collector current, tp limited by Tjmax Turn off safe operating area VCE 600V, Tj 150C Diode forward current TC = 25C TC = 100C Diode pulsed current, tp limited by Tjmax Gate-emitter voltage Short circuit withstand time Power dissipation TC = 25C Mounting Torque, M3 Screw
2) 1)
VCE IC
600 12 6.9
600 9 5.0 24 24
V A
ICpul s IF
24 24
12 6 IFpul s VGE tSC Ptot M Tj , Tstg 24 20 10 68
12 6 24 20 10 32 1.0 V s W Nm
VGE = 15V, VCC 600V, Tj 150C
Operating junction and storage temperature
-55...+150 -55...+150 C
1) 2)
Allowed number of short circuits: <1000; time between short circuits: >1s. Maximum mounting processes: 3 1 Jul-02
SKP06N60,
Thermal Resistance Parameter Symbol Conditions
SKB06N60 SKA06N60
Max. Value
SKP06N60 SKB06N60 SKA06N60
Unit
Characteristic IGBT thermal resistance, junction - case Diode thermal resistance, junction - case Thermal resistance, junction - ambient SMD version, device on PCB
1)
RthJC RthJCD RthJA RthJA TO-220AB TO220-3-31 TO-263AB
1.85 3.5 62
3.9 5.0
K/W
65 40
Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Static Characteristic Collector-emitter breakdown voltage Collector-emitter saturation voltage V ( B R ) C E S V G E = 0V , I C = 5 00 A VCE(sat) V G E = 15 V , I C = 6 A T j =2 5 C T j =1 5 0 C Diode forward voltage VF V G E = 0V , I F = 6 A T j =2 5 C T j =1 5 0 C Gate-emitter threshold voltage Zero gate voltage collector current VGE(th) ICES I C = 25 0 A , V C E = V G E V C E = 60 0 V, V G E = 0 V T j =2 5 C T j =1 5 0 C Gate-emitter leakage current Transconductance Dynamic Characteristic Input capacitance Output capacitance Reverse transfer capacitance Gate charge Internal emitter inductance measured 5mm (0.197 in.) from case Short circuit collector current
2)
Symbol
Conditions
Value min. 600 1.7 1.2 3 Typ. 2.0 2.3 1.4 1.25 4 4.2 350 38 23 32 7 60 max. 2.4 2.8 1.8 1.65 5
Unit
V
A 20 700 100 420 46 28 42 nC nH A nA S pF
IGES gfs Ciss Coss Crss QGate LE IC(SC)
V C E = 0V , V G E =2 0 V V C E = 20 V , I C = 6 A V C E = 25 V , V G E = 0V , f= 1 MH z V C C = 48 0 V, I C =6 A V G E = 15 V T O - 22 0A B V G E = 15 V ,t S C 10 s V C C 6 0 0 V, T j 1 5 0 C
2
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70m thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Jul-02
1)
SKP06N60,
Switching Characteristic, Inductive Load, at Tj=25 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm d i r r /d t T j =2 5 C , V R = 2 00 V , I F = 6 A, d i F / d t =2 0 0 A/ s td(on) tr td(off) tf Eon Eoff Ets T j =2 5 C , V C C = 40 0 V, I C = 6 A, V G E = 0/ 15 V , R G =50 , 1) L = 18 0 nH , 1) C = 25 0 pF Energy losses include "tail" and diode reverse recovery. Symbol Conditions
SKB06N60 SKA06N60
Value min. typ. 25 18 220 54 0.110 0.105 0.215 200 17 183 200 2.8 180 max. 30 22 264 65 0.127 0.137 0.263 nC A A/s ns mJ Unit
ns
Switching Characteristic, Inductive Load, at Tj=150 C Parameter IGBT Characteristic Turn-on delay time Rise time Turn-off delay time Fall time Turn-on energy Turn-off energy Total switching energy Anti-Parallel Diode Characteristic Diode reverse recovery time trr tS tF Diode reverse recovery charge Diode peak reverse recovery current Diode peak rate of fall of reverse recovery current during t b Qrr Irrm d i r r /d t T j =1 5 0 C V R = 2 00 V , I F = 6 A, d i F / d t =2 0 0 A/ s 290 27 263 500 5.0 200 nC A A/s ns td(on) tr td(off) tf Eon Eoff Ets T j =1 5 0 C V C C = 40 0 V, I C = 6 A, V G E = 0/ 15 V , R G = 50 , 1) L =1 8 0n H, 1) C = 2 50 pF Energy losses include "tail" and diode reverse recovery. 24 17 248 70 0.167 0.153 0.320 29 20 298 84 0.192 0.199 0.391 mJ ns Symbol Conditions Value min. typ. max. Unit
1)
Leakage inductance L an d Stray capacity C due to dynamic test circuit in Figure E. 3 Jul-02
SKP06N60,
SKB06N60 SKA06N60
30A
SKP06N60 SKB06N60 SKA06N60
Ic
tp=2s 10A 15s
IC, COLLECTOR CURRENT
20A TC=80C
IC, COLLECTOR CURRENT
50s
TC=110C 10A
1A
200s 1ms
Ic
0A 10Hz
SKP06N60 SKB06N60 SKA06N60
0,1A 1V 10V 100V
DC 1000V
100Hz
1kHz
10kHz
100kHz
f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj 150C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 50)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj 150C)
80W
SKP06N60 SKB06N60
SKP06N60 SKB06N60
Ptot, POWER DISSIPATION
60W
IC, COLLECTOR CURRENT
10A
40W
SKA06N60
20W
SKA06N60
5A
0W 25C
50C
75C
100C
125C
0A 25C
50C
75C
100C
125C
TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj 150C)
TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE 15V, Tj 150C)
4
Jul-02
SKP06N60,
20A
SKB06N60 SKA06N60
20A
15A
15A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
VGE=20V 15V 13V 11V 9V 7V 5V
VGE=20V 10A 15V 13V 11V 9V 7V 5V
10A
5A
5A
0A 0V
1V
2V
3V
4V
5V
0A 0V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25C)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150C)
18A 16A
Tj=+25C -55C +150C
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
20A
4.0V
3.5V
IC = 12A
IC, COLLECTOR CURRENT
14A 12A 10A 8A 6A 4A 2A 0A 0V
3.0V
2.5V
IC = 6A
2.0V
1.5V
2V
4V
6V
8V
10V
1.0V
-50C
0C
50C
100C
150C
VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V)
Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V)
5
Jul-02
SKP06N60,
SKB06N60 SKA06N60
td(off)
t d(off)
t, SWITCHING TIMES
tf
t, SWITCHING TIMES
100ns
tf 100ns
t d(on)
t d(on)
tr tr 10ns 0A 3A 6A 9A 12A 15A 10ns 0 50 100 150
IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 50, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 6A, Dynamic test circuit in Figure E)
5.5V
t d(off)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V -50C 0C 50C 100C 150C typ. max.
t, SWITCHING TIMES
100ns tf
td(on)
tr 10ns 0C 50C 100C 150C
min.
Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 6A, RG = 50, Dynamic test circuit in Figure E)
Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.25mA)
6
Jul-02
SKP06N60,
0.8mJ
*) Eon and Ets include losses due to diode recovery.
SKB06N60 SKA06N60
E ts *
0.6mJ
*) Eon and Ets include losses due to diode recovery.
E ts *
E, SWITCHING ENERGY LOSSES
0.6mJ
E, SWITCHING ENERGY LOSSES
0.4mJ
0.4mJ E on * E off 0.2mJ
E off E on *
0.2mJ
0.0mJ 0A
3A
6A
9A
12A
15A
0.0mJ 0
50
100
150
IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, RG = 50, Dynamic test circuit in Figure E)
RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150C, VCE = 400V, VGE = 0/+15V, IC = 6A, Dynamic test circuit in Figure E)
0.4mJ
*) Eon and Ets include losses due to diode recovery.
E ts *
E, SWITCHING ENERGY LOSSES
0.3mJ
0.2mJ
E on *
E off 0.1mJ
0.0mJ 0C
50C
100C
150C
Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 6A, RG = 50, Dynamic test circuit in Figure E)
7
Jul-02
SKP06N60,
25V 1nF
SKB06N60 SKA06N60
20V
C iss
VGE, GATE-EMITTER VOLTAGE
120V 15V
480V
C, CAPACITANCE
100pF
10V
C oss
5V C rss 0V 0nC 15nC 30nC 45nC 10pF 0V 10V 20V 30V
QGE, GATE CHARGE Figure 16. Typical gate charge (IC = 6A)
VCE, COLLECTOR-EMITTER VOLTAGE Figure 17. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz)
25 s
100A
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
11V 12V 13V 14V 15V
tsc, SHORT CIRCUIT WITHSTAND TIME
20 s
80A
15 s
60A
10 s
40A
5 s
20A
0 s 10V
0A 10V
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE Figure 18. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25C)
VGE, GATE-EMITTER VOLTAGE Figure 19. Typical short circuit collector current as a function of gate-emitter voltage (VCE 600V, Tj = 150C)
8
Jul-02
SKP06N60,
500ns
1000nC
SKB06N60 SKA06N60
Qrr, REVERSE RECOVERY CHARGE
400ns
800nC
trr, REVERSE RECOVERY TIME
IF = 12A
300ns
IF = 12A
600nC
IF = 6A IF = 3A
200ns
IF = 6A IF = 3A
400nC
100ns
200nC
0ns 50A/s 150A/s 250A/s 350A/s 450A/s 550A/s
0nC 50A/s 150A/s 250A/s 350A/s 450A/s 550A/s
d i F / d t, DIODE CURRENT SLOPE Figure 20. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E)
d i F / d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E)
12A
600A/s
d i r r /d t, DIODE PEAK RATE OF FALL
10A
500A/s
8A
IF = 12A
OF REVERSE RECOVERY CURRENT
Irr, REVERSE RECOVERY CURRENT
400A/s
6A
IF = 6A IF = 3A
300A/s
4A
200A/s
2A
100A/s
0A 50A/s 150A/s 250A/s 350A/s 450A/s 550A/s
0A/s 50A/s
150A/s 250A/s 350A/s 450A/s 550A/s
d i F / d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E)
diF/dt, DIODE CURRENT SLOPE Figure 23. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125C, Dynamic test circuit in Figure E)
9
Jul-02
SKP06N60,
SKB06N60 SKA06N60
2.0V 12A
10A
8A 150C 100C 4A 25C 2A -55C
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
I F = 12A
6A
1.5V
I F = 6A
0A 0.0V
0.5V
1.0V
1.5V
2.0V
1.0V
-40C
0C
40C
80C
120C
VF, FORWARD VOLTAGE Figure 24. Typical diode forward current as a function of forward voltage
Tj, JUNCTION TEMPERATURE Figure 25. Typical diode forward voltage as a function of junction temperature
10 K/W
D=0.5
1
ZthJCD, TRANSIENT THERMAL IMPEDANCE
ZthJCD, TRANSIENT THERMAL IMPEDANCE
D=0.5
10 K/W 0.2 0.1 0.05 0.02 10 K/W 0.01 single pulse
C 1 = 1 / R 1 C 2 = 2 /R 2
-1
0
SKP06N60 SKB06N60
R,(K/W) 0.523 0.550 0.835 1.592
R1
10 K/W 0.1 0.05 0.02 10 K/W 0.01
-1
0
0.2
SKA06N60
R,(K/W) 2.852 0.654 0.665 0.828
R1
, (s)= 7.25*10-2 6.44*10-3 7.13*10-4 7.16*10-5
R2
, (s)= 1.887 4.64*10-2 2.88*10-3 3.83*10-4
R2
single pulse 10 K/W 10s
-2
C 1 = 1 / R 1 C 2 = 2 /R 2
10 K/W 1s
-2
10s
100s
1ms
10ms 100ms
1s
100s
1ms
10ms 100ms
1s
10s
tp, PULSE WIDTH Figure 26. Diode transient thermal impedance as a function of pulse width (D = tp / T)
tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T)
10
Jul-02
SKP06N60,
SKB06N60 SKA06N60
10 K/W
1
D=0.5 10 K/W
0
ZthJC, TRANSIENT THERMAL IMPEDANCE
0.2 0.1 0.05 10 K/W 0.02
-1
ZthJC, TRANSIENT THERMAL IMPEDANCE
D=0.5
0 10 K/W 0.2 0.1
SKP06N60 SKB06N60
R,(K/W) 0.705 0.561 0.583
R1
0.05
-1 10 K/W 0.02
SKA06N60
R,(K/W) 2.73 0.395 0.353 0.323
R1
10 K/W
-2
0.01
, (s)= 0.0341 3.74E-3 3.25E-4
R2
0.01 10 K/W
-2
, (s)= 1.83 2.93*10-2 2.46*10-3 3.45*10-4
R2
single pulse 10 K/W 1s
-3
single pulse 10 K/W 1s
-3
C 1 = 1 / R 1 C 2 = 2 /R 2
C1=1/R1
C 2=2/R2
10s 100s
1m s
10m s 100m s
1s
10s 100s 1ms 10ms 100ms
1s
10s
tp, PULSE WIDTH Figure 28. IGBT transient thermal impedance as a function of pulse width (D = tp / T)
tp, PULSE WIDTH Figure 29. IGBT transient thermal impedance as a function of pulse width (D = tp / T)
11
Jul-02
SKP06N60,
TO-220AB
symbol
SKB06N60 SKA06N60
dimensions
[mm] min max 10.30 15.95 0.86 3.89 3.00 6.80 14.00 4.75 0.65 1.32 min
[inch] max 0.4055 0.6280 0.0339 0.1531 0.1181 0.2677 0.5512 0.1870 0.0256 0.0520
A B C D E F G H K L M N P T
9.70 14.88 0.65 3.55 2.60 6.00 13.00 4.35 0.38 0.95
0.3819 0.5858 0.0256 0.1398 0.1024 0.2362 0.5118 0.1713 0.0150 0.0374
2.54 typ. 4.30 1.17 2.30 4.50 1.40 2.72
0.1 typ. 0.1693 0.0461 0.0906 0.1772 0.0551 0.1071
TO-263AB (D2Pak)
symbol
dimensions
[mm] min max 10.20 1.30 1.60 1.07 min
[inch] max 0.4016 0.0512 0.0630 0.0421
A B C D E F G H K L M N P Q R S T U V W X Y Z
9.80 0.70 1.00 1.03
0.3858 0.0276 0.0394 0.0406
2.54 typ. 0.65 0.85
0.1 typ. 0.0256 0.0335
5.08 typ. 4.30 1.17 9.05 2.30 4.50 1.37 9.45 2.50
0.2 typ. 0.1693 0.0461 0.3563 0.0906 0.1772 0.0539 0.3720 0.0984
15 typ. 0.00 4.20 0.20 5.20
0.5906 typ. 0.0000 0.1654 0.0079 0.2047
8 max 2.40 0.40 10.80 1.15 6.23 4.60 9.40 16.15 3.00 0.60
8 max 0.0945 0.0157 0.1181 0.0236
0.4252 0.0453 0.2453 0.1811 0.3701 0.6358
12
Jul-02
SKP06N60,
P-TO220-3-31
SKB06N60 SKA06N60
Please refer to mounting instructions (application note AN-TO220-3-31-01)
dimensions symbol
[mm] min max 10.63 16.12 0.78 min
[inch] max 0.4184 0.6345 0.0306
A B C D E F G H K L M N P T
10.37 15.86 0.65
0.4084 0.6245 0.0256
2.95 typ. 3.15 6.05 13.47 3.18 0.45 1.23 3.25 6.56 13.73 3.43 0.63 1.36
0.1160 typ. 0.124 0.2384 0.5304 0.125 0.0177 0.0484 0.128 0.2584 0.5404 0.135 0.0247 0.0534
2.54 typ. 4.57 2.57 2.51 4.83 2.83 2.62
0.100 typ. 0.1800 0.1013 0.0990 0.1900 0.1113 0.1030
13
Jul-02
SKP06N60,
i,v diF /dt
SKB06N60 SKA06N60
tr r =tS +tF Qr r =QS +QF tr r
IF
tS QS
tF 10% Ir r m t VR
Ir r m
QF
dir r /dt 90% Ir r m
Figure C. Definition of diodes switching characteristics
1
Tj (t) p(t)
2
r2
r1
n
rn
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent circuit
Figure B. Definition of switching losses
Figure E. Dynamic test circuit Leakage inductance L =180nH an d Stray capacity C =250pF.
14
Jul-02
SKP06N60,
Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 Munchen (c) Infineon Technologies AG 2000 All Rights Reserved. Attention please!
SKB06N60 SKA06N60
The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
15
Jul-02


▲Up To Search▲   

 
Price & Availability of Q67040-S4340

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X